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Abstract

A single unit item owner sells the good to buyers through an auction design. We study the

revenue guarantee (the lowest expected revenue amount that the seller can get) across all Bayes

coarse correlated equilibria (BCCE, a weaker and inclusive equilibrium concept than Bayes cor-

related equilibrium, or BCE), starting with analysis in a first-price auction and a common value

setting. We first show that it suffices to only examine identical-play equilibria, where all buyers

follow exactly the same actions. Based on this simplification, we give characteristic functions

for the revenue guarantee assuming a continuous value distribution. Revenue guarantee under

BCCE converges to that under BCE when the market goes large. We also extend the model to

allow for discrete distributions, other standard auctions, and symmetric prior environments.
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1 Introduction

In mechanism designs and information economics, a key object of interest is the revenue, how much

the seller would collect from sales in expectation. However, this number can vary to a huge extent

depending on different information structures (that is, different signals received by the buyers) and

on the equilibrium concept, as heterogeneous signals will generate dissimilar beliefs and different

notions of equilibrium will give disparate equilibrium constraints on the buyers’ actions. A natural

question comes for the seller: given a certain equilibrium definition, what would be the minimum

revenue she could get across all possible information structures? The answer to this question

provides a worst-case analysis. This minimum revenue, defined as a revenue guarantee, guarantees

the least amount of payoff the seller would obtain across all equilibria and is robust to information

by construction. If the guarantee is high relative to the full potential payoff, then the seller would

be more satisfied.

At first look, the revenue guarantee might be unsolvable unless we make additional assumptions

on the exact forms of information structure, as most existing literature did, but that is not the case.

Under the first-price auction (FPA), Bergemann, Brooks and Morris (2017) provides the character-

ization function of revenue guarantee across Bayes correlated equilibria (BCE) in a common-value

single-item setting. Nonetheless, the concept of BCE might be a narrow definition: As Hartline,

Syrgkanis and Tardos (2015) suggests, no-regret learning dynamic, a fundamental feature shared

by many algorithms in applications, converges to Bayes coarse correlated equilibrium (BCCE), a

broader and inclusive concept of the BCE. It would be useful to explore the revenue guarantee

under the notion of BCCE, as it gives a more solid guarantee subject to a larger set of information

structures and in practice may offer more insights on the least possible amount of revenue.

This paper analyzes the revenue guarantee problem under the notion of BCCE. We start our

analysis in the first-price auction with a common-value item, and then generalize the results from

FPA to any standard auctions with no losing payments and from common values to symmetric

priors. In the paper, we first show that to study the revenue guarantee problem under BCCE, it

suffices to examine only identical play BCCEs, that is, when all the buyers act in the same way,

and by that, it is without loss of generality to consider them jointly as a single representative

buyer. This change allows us to disregard nuances between buyers’ action profiles and thus largely

1



simplifies the problem. Then based on the simplification, we characterize revenue guarantee when

it takes a continuous distribution and when the value takes a binary distribution of 0 and 1. The

asymptotic revenue guarantee of a continuous distribution is equal to the revenue guarantee under

BCE characterized by Bergemann, Brooks and Morris (2017). The result of binary distribution

also offers a lower bound on the revenue guarantee of any other arbitrary distribution of the same

expected value.

Our research relates to literature in four strands: the first-price auction, revenue guarantee,

Bayes coarse correlated equilibrium, and no-regret learning dynamics. Firstly, our work is related

to a large area of literature on the FPA: from earlier papers that make additional assumptions on

information structures such as Vickrey (1961), Milgrom andWeber (1982), Battigalli and Siniscalchi

(2003), Dekel and Wolinsky (2003), Fang and Morris (2006), Azacis and Vida (2015), and Feldman,

Lucier and Nisan (2016) to the recent work by Bergemann, Brooks and Morris (2017) that allows for

information variations but examines under the notion of BCE. Our paper advances the analysis and

characterizes the revenue guarantee under a weaker notion of BCCE. It is also worth noting that

this paper’s results apply beyond FPA: it holds for any standard auctions without losing payments.

Secondly, it contributes to the literature on BCCE. Proposed by Moulin and Vial (1978), though an

important concept to which many learning algorithms converge, BCCE has been barely studied in

the economics literature. It is mainly because there are no simple optimal conditions like the first-

order condition that one can start analyzing with. Also, the equilibrium concept is so coarse that

very few affirmative arguments concerning the equilibrium outcomes can be declared. However, as

we show in this paper, when combining BCCE with the worst-case scenario analysis, it may be

possible to derive certain results on the equilibrium outcomes. Thirdly, this paper contributes to

the literature on revenue guarantee such as Bergemann, Brooks and Morris (2017), Du (2018), and

Brooks and Du (2021) in that it is one of the first papers that investigates revenue guarantee beyond

the scope of BCE. There are also papers studying the guarantee in terms of welfare analysis, namely

the price of anarchy, such as Syrgkanis and Tardos (2013) and Jin and Lu (2023), but that is out

of the frame of this paper. Lastly, this paper resonances with no-regret learning literature such as

Hart and Mas-Colell (2000) and Blum et al. (2008), and as Hartline, Syrgkanis and Tardos (2015)

suggests, no-regret learning dynamics always converge to a solution concept of BCCE. Therefore,
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our analysis under BCCE may offer insights into those industrially applied no-regret algorithmic

design outcomes.

The rest of the paper proceeds as follows. Section 2 introduces the model framework of the

revenue guarantee problem. Section 3 shows that it suffices to study only with identical play

BCCEs, arguing first with 2 buyers and then generalizing to N buyers. Section 4 characterizes the

revenue guarantee for continuous distributions. Section 5 analyzes a binary distribution revenue

guarantee, which also serves as a lower bound of the revenue guarantee for all distributions with the

same expected value. Section 6 extends the analysis to standard auctions and symmetric priors.

Section 7 concludes and discusses potential applications.

2 Model

A principal who owns a single-unit good intends to sell the item to buyers indexed by i ∈ {1, ..., N}

through the first-price auction. The good has a common value v ∈ V = [v, v] ⊆ [0,∞), distributed

according to a probability measure µ ∈ ∆(V ). In this section (and up to section 6), for simplicity,

we restrict the mechanism of sale to be the first-price auction and the item to be commonly valued.

We will later show in section 6, these two restrictions can be easily extended to standard auctions

and symmetric prior.

The action profile is denoted by A =
∏N

i=1Ai ⊆ V N . The buyers’ private information about

the state is described by an information structure I = (S, ω), where Si is a set of signals for buyer

i, S =
∏N

i=1 Si, and ω ∈ ∆(V × S) is the joint distribution of the states and signals such that

margV ω = µ.

Define a strategy for buyer i to be a mapping from signals to actions αi : Si → ∆(Ai), then

da =

∫
s∈S

∏
i

αi(ai|si)ds.

Define ω̃ ∈ ∆(V × S × A) to be the joint distribution of values, signals, and actions, where

the actions are constructed based on the strategy α and the info structure ω. In other words,

ω = marg{V,S} ω̃.
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Then let us restrict our attention to only the values and actions: Define σ ∈ ∆(V ×A) to be the

marginal joint distribution of values and signals, or σ = marg{V,A} ω̃. From now on, we will work

directly in the σ world. It offers us a convenience to ignore all the signal structures, as signals do

not directly affect the equilibrium constraints under BCCE. Nonetheless, signals are still implicitly

used as a way for buyers to correlate their actions.

Therefore, buyer i’s expected utility given σ is

Ui(σ) =

∫
v∈V

∫
a∈A

ui(v, a)σ(dv, da).

In the first-price auction setting, let X = maxj aj and |J | be the number of buyers who bid the

highest price, then the utility function of buyer i given a specific realization of v and a concrete

action profile a is

ui(v, ai, a−i) = 1ai=M × 1

|J |
× (v −X).

In other words, if there is only one buyer who bids for the highest value, then she will win the item

and pay the price she offers. If there are more than 1 buyers who offer the highest bid, they will

get a share of the item and pay the corresponding fractional price if the item is divisible, or get the

entire item and pay full price with 1/|J | probability. In the latter case, we consider all buyers to

be risk-neutral.

A Bayes correlated equilibrium (BCE) is a joint distribution σ such that:

∀i, ∀a′i,

∫
v∈V

∫
a−i∈A−i

ui(v, ai, a−i)σ(dv, da) ≥
∫
v∈V

∫
a−i∈A−i

ui(v, a
′
i, a−i)σ(dv, da).

In another sense, BCE needs to make sure that, conditional on signals si that is associated with

ai, any deviation a′i is not preferred, so it optimizes conditional on ai.

On the other hand, a Bayes coarse correlated equilibrium (BCCE) is a joint distribution σ such

that: ∀i, ∀a′i,

∫
v∈V

∫
a∈A

ui(v, ai, a−i)σ(dv, da) ≥
∫
v∈V

∫
a∈A

ui(v, a
′
i, a−i)σ(dv, da).
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In contrast, BCCE only needs to satisfy that any fixed deviation a′i that doesn’t depend on si

is unfavorable. Thus, it optimizes ex-ante (not conditional on ai).

Let us consider an example to illustrate the difference of those two concepts. Suppose it is still

in the first-price auction, and the item value v is uniformly distributed in [0, 1], and all buyers i

receive a perfect information si = v. Then consider the strategy ai = 0.5si, so all buyers bid half

of the item value. It is not a BCE, as some buyer i could bid a bit more than half of the value and

win the item entirely. However, it is a BCCE: suppose a buyer i deviates to a fixed action δ, she

would win the item with values ranged in [0, 2δ] and pay δ, so the expected payoff is 0, which is

less than the positive payoff following equilibrium.

It is also straightforward to observe that BCCE is a weaker concept than BCE. For buyer i,

BCE constraints must hold for all distribution conditional on ai, and integrating across ai directly

implies the BCCE constraint for buyer i. This is where the name “coarse” comes from.

Given the common value restriction, define

E(v) =
∫
v
vµ(dv).

Then the expected revenue can be expressed as

R(σ) = E(v)−
∑
i

E(ui)

= E(v)−
∑
i

∫
v∈V

∫
a∈A

ui(v, a)σ(dv, da).

We define the revenue guarantee of a mechanism M as the minimum expected revenue over all

BCCE σ:

RG = min
σ

R(σ), where σ is a BCCE.

We call a BCCE σ that attains the revenue guarantee level RG as a min-R BCCE. The purpose

of this paper is to find such RG. We will later construct an example that achieves the minimum

revenue level, so the minimum is well-defined.

Finally, let us remind ourselves that after solving the problem over σ, we need to construct an

information structure and corresponding bidding strategies to sustain those action profiles.
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3 Identical Plays

In this section, we show that to solve the revenue guarantee problem under FPA, it suffices to

examine only identical-play equilibria, where all buyers’ actions are exactly the same. In another

sense, we can view all buyers as a single representative buyer who jointly bids according to a single

strategy. This result would largely simplify the analysis, as it is no longer needed to investigate

the interactions and nuances between buyers. Note that “identical plays” is a stronger assertion

than “symmetric strategies”, as the later one may yield different joint actions given heterogeneous

signals.

3.1 Two Buyers

We begin the arguments with two buyers and then generalize the results to N buyers. The case of

two buyers is more intuitive, and it incorporates the key idea of the analysis.

For the purpose of being manipulated later, information of µ and σ is stored in two dictionaries,

where v and (v, a) are the keys respectively, and the corresponding probabilities can be accessed by

calling µ(v) and σ(v, a). For two buyers, (v, a) = (v, a1, a2). The continuous distribution of µ and

σ can be well approximated by an infinitesimal grid size of v and a, and then it is possible to store

that finite information in the dictionary. This design allows us to easily modify probability values

for the keys in the info structure σ. For instance, if we want to replace (v, c1, c2) with a probability

p to (v, d1, d2) with probability p/2 and (v, e1, e2) with probability p/2, we just need to subtract p

for the original probability value stored in (v, c1, c2), and add p/2 to both values stored in (v, d1, d2)

and (v, e1, e2). However, recall that for σ to be a valid information structure, it has to be that∑
a σ(v, a) = µ(v) for all possible v and that

∑
v,a σ(v, a) = 1. These are the two conditions we

need to check after modifications on σ. For the example above, suppose σ̃ is the joint distribution

after changes and σ is the one before changes, we write the modification as

σ̃ = σ − p× (v, c1, c2) +
p

2
× (v, d1, d2) +

p

2
× (v, e1, e2).

This construction method may be seen several times throughout proofs.
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Proposition 1. With only 2 buyers, the min-R BCCE in FPA has only identical plays (i.e., if σ

is a min-R BCCE, and for any (v, a1, a2) such that σ(v, a1, a2) > 0, then it must be that a1 = a2.)

Proof. Let σ̃ be a mirror distribution of σ with a switch of index. By this construction, buyer 1 in σ̃

behaves exactly the same as buyer 2 in σ, and buyer 2 in σ̃ the same as buyer 1 in σ. For any tuple

(v, a1, a2) such that σ(v, a1, a2) > 0, suppose σ(v, a1, a2) = p, then σ̃(v, a2, a1) = σ(v, a1, a2) = p.

Since σ is a BCCE, then by symmetry, σ̃ is also a BCCE and R(σ) = R(σ̃).

Now consider σ̂ = 1
2σ+

1
2 σ̃ (with 1/2 probability it follows σ, and with 1/2 probability it follows

σ̃; σ̂ can be easily constructed using the dictionaries).

By the linearity of expectation, R(σ̂) = 1
2R(σ) + 1

2R(σ̃) = R(σ). By the convexity of BCCE, σ̂

is still a BCCE. The convexity of BCCE is directly implied as the BCCE equilibrium constraint is

linear. Combining these two we get that σ̂ is also a minimum revenue BCCE. Now let

σ̂(v) =
1

2
σ(v, a1, a2)× (v, a1, a2) +

1

2
σ̃(v, a2, a1)× (v, a2, a1) =

p

2
× (v, a1, a2) +

p

2
× (v, a2, a1).

Consider a slightly altered distribution

γ = σ̂ − σ̂(v) +
p

2
× (v, a1, a1) +

p

2
× (v, a2, a2).

In other words, we modify the dictionary σ̂ and construct a new dictionary γ in the following

way: first delete the σ̂(v) parts of σ̂ (subtract probability value p/2 in the key of (v, a1, a2) and

probability p/2 in the key of (v, a2, a1)), then add probability value p/2 each to keys (v, a1, a1)

and (v, a2, a2). It is easy to check conditions that
∑

a σ(v, a) = µ(v) for all possible v and that∑
v,a σ(v, a) = 1 are satisfied, so this modification is valid.

Now let us compare γ with σ̂. First we show that R(σ̂) ≥ R(γ). By the nature of the FPA

pricing function,

R(σ̂)−R(γ) = p×max(a1, a2)− p/2× (a1 + a2) ≥ 0.

Consequently, since buyers’ strategies are both symmetric in σ̂ and γ, then ∀i,

Eσ̂(ui) =
E(v)−R(σ̂)

2
≤ E(v)−R(γ̂)

2
= Eγ(ui)
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Secondly, we show that γ is also a BCCE. Let σ̂rest = σ̂ − σ̂(v), the common part shared in σ̂ and

γ. Then from the perspective of BCCE equilibrium constraint, since σ̂ is a valid BCCE (we use a

different notation b as a is fixed in the previous argument),

∀i, ∀b′i,
∫
v,bi,b−i

ui(v, bi, b−i)dσ̂(v, bi, b−i) ≥
∫
v,bi,b−i

ui(v, b
′
i, b−i)dσ̂(v, bi, b−i).

Here we replace the
∑

with
∫
as we can always take the grid size of the dictionary to be arbitrarily

small. Rewrite the equation,

∀i, ∀b′i, Eσ̂(ui) ≥
∫
v,bi,b−i

ui(v, b
′
i, b−i)dσ̂(v, bi, b−i)

=

∫
v,bi,b−i

ui(v, b
′
i, b−i)dσ̂rest(v, bi, b−i) +

p

2
× ui(v, b

′
i, a1) +

p

2
× ui(v, b

′
i, a2)

=

∫
v,bi,b−i

ui(v, b
′
i, b−i)dγ(v, bi, b−i).

Therefore ∀i, ∀b′i,

Eγ(ui) ≥ Eσ̂(ui)

=

∫
v,bi,b−i

ui(v, b
′
i, b−i)dγ(v, bi, b−i).

Hence, γ is also a valid BCCE. However, because σ̂ is a minimum revenue BCCE, it must be that

R(σ̂) ≤ R(γ). This is only allowed to occur when max(a1, a2) =
1
2(a1 + a2), or when a1 = a2, then

it must be that a1 = a2.

The economic intuition is that identical bids can reduce price competition among buyers, and

that perfect collusion leads to a highest total payoff for buyers and a lowest revenue for the seller.

3.2 N Buyers

An interesting fact in the setting of 2 buyers is that the plays must be identical for a minimum

revenue BCCE. However, this result does not need to hold when N > 2. For more than two buyers

in the FPA, the only guarantee is that the first max must be the same as the second max, or the

highest bid must be the same as the second highest bid, and it has no restriction on the rest of the
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bids. Nonetheless, it is without loss of generality to consider all the rest bidding the same as the

first max buyer.

If we go beyond the first-price auction to the standard auction setting, then we need to replace

the “second max” to a “marginal type” suitable in the auction setting, so that the “first max” (or

the winning type) is the same as the “marginal type” in the minimum revenue case. We need to

assume positive payoffs for all buyer to eliminate uninteresting cases, and we will talk more about

it in section 6.

Proposition 2. Let the first max (the highest number in a set) be max1, the second max (the second

highest number in a set) be max2, then under FPA, if σ is a min-R BCCE, for any (v, a1, a2, ..., an)

such that σ(v, a1, a2, ...an) > 0, it must be that max1{a1, ..., an} = max2{a1, ..., an}

Proof. See Appendix.

Lemma 1. (Identical plays) There exists a min-R BCCE σ such that for all σ(v, a1, a2, ..., an) > 0,

∃α s.t. a1 = a2 = ... = an = α. We call such σ an identical play BCCE.

Proof. See Appendix.

4 Characterization of a Continuous Distribution

This section characterizes the revenue guarantee problem where µ(v) is required to be an absolutely

continuous distribution, so that a probability density function exists. For simplicity, the range of

v is normalized to [0, 1]. We list our main characterization results first, and then dive into all the

technical details. For derivations, We start with the asymptotic problem, as it is more intuitive to

approach and has a closed-form solution, and then attack the problem of a finite number of buyers,

where the revenue guarantee is characterized by a set of equations.

Theorem 1. The revenue guarantee level RG across BCCE (RGBCCE) with an associated threshold

value v̂ is characterized by the following equations,


E(v)−RGBCCE

N =
∫ v̂
v=0 vf(v)dv,

RGBCCE =
∫ 1
v=0H(v)f(v)dv,

(1)
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where

H(v) := E(v′|v̂ ≤ v′ ≤ v)× F (v)− F (v̂)

F (v)
, (2)

and F and f are the cdf and pdf of µ, µ(dv) = f(v)dv.

Moreover, limN→∞RGBCCE = limN→∞RGBCE. In a large market, the revenue guarantee

across BCCE and that across BCE are the same.

Based on this theorem, we could solve for the RGBCCE and v̂. Let us now discuss why a unique

solution exists. We first show the existence of a solution. Let us reduce to one equation with only

v̂ from the system of equations in thorem 1:

E(v) =
∫ 1

v=0

[∫ v

m=v̂
mf(m)dm

]
f(v)

F (v)
dv +N

∫ v̂

v=0
vf(v)dv

When v̂ = 0 , the right-hand side ≤ E(v). When v̂ = 1 , the right-hand side ≥ NE(v) > E(v). Then

by Intermediate Value Theorem, there exists a v̂ ∈ [0, 1] that satisfies the right-hand side = E(v),

so a solution always exists. Furthermore, as v̂ increases, RGBCCE decreases, so the solution must

be unique by construction, otherwise RGBCCE won’t be the minimum revenue level.

4.1 Simplified Setup

Before diving into computational details, let us first simplify the problem using what we have

discovered so far. Given the identical play argument, we can think of all buyers jointly as a single

agent, and then the revenue minimization problem can be simplified as (here a is one-dimensional)

min
σ

∫
a× σ(dv, da),

which is subject to the equilibrium constraint that for any possible deviation δ,

E(v)−RGBCCE

N
≥

∫
1(δ > a)(v − δ)σ(dv, da), (3)

and that σ is an identical play min-R BCCE that satisfies
∫
a σ(v, da) = µ(v) for all v. The left-

hand side is the utility obtained in the equilibrium, and the right-hand side is the utility amount

when deviating to δ for buyer i, as he would win the item when δ > a and pay the price of δ.
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This obedience constraint restricts that any deviation δ is not favored to following the equilibrium

strategies.

To further describe the relation between a and v in σ, we introduce the definition of monotonic-

ity, so that as v increases, a also increases, and we may write one as a function of the other.

Lemma 2. (Monotonicity) Without loss of generality, we can treat the identical play min-R BCCE

σ as monotonic, that is ∀(v1, a1), (v2, a2) such that σ(v1, a1) > 0, σ(v2, a2) > 0, if v1 > v2, then

a1 > a2.

Proof. See Appendix.

The intuition is that for the minimum revenue scenarios, it is never optimal to pay a higher

price on an item with less value. Based on this lemma, we can treat σ as a monotonic identical

play min-R BCCE. Then we can define the function

v(δ) = sup{v : σ(v, a) > 0, δ > a}

that finds the highest possible value v where a potential deviation play δ could win the item. The

main purpose of introducing v is to reduce the 2-D σ space of (v, a) to 1-D µ space of v, which is

known and can be numerically tracked.

4.2 Asymptotic Characterization

Let us look at a special case, when the number of buyers is arbitrarily large. This asymptotic case

embeds essential proof ideas for the general case in theorem 1. To start, we copy the equilibrium

constraint from equation 3 here:

E(v)−RGBCCE

N
≥

∫
1(δ > a)(v − δ)σ(dv, da),

As N → ∞, the limit of the left-hand side

lim
N→∞

E(v)−RGBCCE

N
= 0,
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and the right-hand side does not depend on N . So for the asymptotic case, when the number of

buyers goes large, the equilibrium constraint can be further simplified as ∀δ,

0 ≥
∫
1(δ > a)(v − δ)σ(dv, da).

Moreover, using v(δ), the equilibrium constraint can be written as for all potential deviation δ,

0 ≥
∫ v(δ)

v=0
(v − δ)µ(dv).

Finally, observe that when δ = 0, the constraint is binding. If any constraint of δ ∈ (0,E(v)] is

slack, then we can decrease bidding values a associated with v(δ) and at the same time force the

equilibrium inequality condition to reach an equality level. As this change still satisfies all the

constraints, it is still a BCCE, but now it achieves a lower revenue amount. The upper bound E(v)

is chosen since it is never profitable to deviate to a level δ > E(v) where the potential deviation

would win the item in all cases and get a surely negative payoff. Hence, for a minimum revenue

BCCE, all the constraints must be binding for δ ∈ [0,E(v)]. Fix a δ, we have

0 =

∫ v(δ)

v=0
(v − δ)µ(dv),

or equivalently,

δF (v(δ)) =

∫ v(δ)

v=0
vf(v)dv.

Hence, it must be that ∀δ ∈ [0, 1],

δ = E[v|v ≤ v(δ)].

Let function G(v) := E[v′|v′ ≤ v]. Now this offers another angle why δ ∈ [0,E(v)], as the conditional

mean G(v) cannot exceed E(v). Since µ is known and continuous, G(v) can be calibrated. G−1 also

exists and can be computed as G is strict increasing in v. Writing in terms of G−1, v(δ) = G−1(δ)

is also characterized. Finally, note that v reveals the relation between v and a, so v(a) = v(a) =
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G−1(a) and a = G(v). Therefore, the corresponding revenue guarantee (across all BCCEs) is

RGBCCE =

∫ E(v)

a=0

∫ 1

v=0
aσ(dv, da)

=

∫ 1

v=0
G(v)µ(dv)

=

∫ 1

v=0
G(v)f(v)dv.

This characterizes the asymptotic revenue guarantee given a continuous distribution µ.

We can compare our result to the existing literature (Bergemann, Brooks and Morris (2017)),

which has an asymptotic revenue guarantee across all BCEs

RGBCE =

∫ 1

v=0
−v ln(F (v))f(v)dv.

It turns out the revenue guarantee under BCE and the revenue guarantee under BCCE are equal

asymptotically. To see the equivalence result, let x =
∫ v
t=0 tf(t)dt, y = ln(F (v)), then

RGBCCE −RGBCE =

∫
xdy +

∫
ydx =

[
xy

]∣∣∣1
v=0

= 0.

As we enlarge our definition of equilibria, we happen to not lose any potential worst-case revenues

asymptotically. However, as we will show later, a difference in the revenue guarantees exists for

finite N , but the gap shrinks to zero as N goes large.

To get a better sense, let us look at an example here. Based on the characteristic function

above, we can calculate the asymptotic revenue guarantee of FPA across BCCE under a uniform

distribution. Given µ(v) ∼ Uniform[0, 1], we know

G(v) = E[v′|v′ ≤ v] =
v

2
, and f(v) = 1,

so

RGBCCE = RGBCE =

∫ 1

v=0

1

2
vdv =

1

4
.
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4.3 Finite N Characterization

Now we look beyond the asymptotic problem and focus on a finite number of buyers. The only

difference between a finite and infinite N is that now the equilibrium constraint is more relaxed,

and a potential deviation δ is preferred only when it has more payoff than the amount of payoff

shared between buyers. Mathematically, for any possible deviation δ,

E(v)−R

N
≥

∫
1(δ > a)(v − δ)σ(dv, da),

or in v measure,

E(v)−R

N
≥

∫ v(δ)

v=0
(v − δ)µ(dv).

Still using the same approach as the asymptotic case, to lower revenue, we want the constraint to

be binding as much as possible. Therefore, for action a associated with small item values v, we

assign a = 0 to them, up to a cutoff value v̂ that satisfies

E(v)−R

N
=

∫ v̂

v=0
vµ(dv). (4)

For v > v̂, as the equilibrium constraint must be binding,

E(v)−R

N
=

∫ v(a)

v=0
(v − a)µ(dv),

so

aF (v(a)) +

∫ v̂

v=0
vf(v)dv =

∫ v(δ)

v=0
vf(v)dv,

then

a = E(v|v̂ ≤ v ≤ v)× F (v(a))− F (v̂)

F (v(a))
.

Hence, let

H(v) := E(v′|v̂ ≤ v′ ≤ v)× F (v)− F (v̂)

F (v)
,
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then a = H(v), and the corresponding revenue guarantee

RGBCCE =

∫
v,a

aσ(dv, da) =

∫ 1

v=0
H(v)f(v)dv (5)

Now we have two equations ((4) and (5)) and two unknowns (R and v̂), so we could solve for both,

and R is the revenue guarantee we are interested in. Note here the asymptotic problem is a special

case of the general N problem: it has a restriction of v̂ = 0 so that H(v) = G(v). Finally, let us

recall that we need to construct the signal structures that support the level of revenue guarantee.

It turns out not to be a hard task: let si = v and a = H(si) for all i, and it attains the revenue

guarantee level. This concludes our proof of Theorem 1.

Let us still study the uniform distribution example and consider N = 2. Now equation (4) gives

∫ v̂

v=0
vdv =

1
2 −R

2
, so v̂ =

√
1

2
−R.

Combine it with equation (5),

R =

∫ 1

v=0

(v + v)

2

(v − v)

v
dv

=

[
1

4
v2 − 1

2
v̂2 ln(v)

]1
v=v̂

=
1

4
− 1

4
(
1

2
−R) +

1

2
(
1

2
−R) ln

√
1

2
−R.

Solving it we get R = 0.04708. In contrast with a BCE revenue guarantee of 1/6 from Bergemann,

Brooks and Morris (2017), the BCCE revenue guarantee is at a much lower level. In fact, as N

increases, the gap between the BCE and BCCE revenue guarantees reduces and eventually vanishes

as N → ∞.

5 Unknown Distributions

So far, we have characterized the BCCE revenue guarantee for a known continuous distribution µ.

However, sometimes the seller may not know the exact distribution of µ, except for an expected

item value E(v). In such cases, she may still be interested in the worst scenario payoff across all
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information structures and across all distributions, as it gives some ideas of the payoff level. We

define this slightly different problem as the revenue guarantee problem given a fixed expected value.

This section solves this extended problem. We first show that to find the revenue guarantee across

all BCCEs under a fixed E(v), it is sufficient to only look at the binary distribution. We then

attack the binary distribution problem using the same technical approach. Naturally, this offers a

lower bound of revenue guarantee problem for any other known distribution µ with Eµ(v) = E(v),

and it doesn’t require µ to be continuous. Therefore, it also offers some insights into the revenue

guarantee when our continuous characterization method fails.

5.1 Binary Restrictions and Lower Bounds

Proposition 3. (Lower bound for binary restriction) Under FPA,

min
µ(v) s.t.Eµ(v)=E(v)

min
γ

R(γ)|µ ⇐⇒ min
γ

R(γ)|µ

where γ is a BCCE that satisfies
∑

a γ(v, a) = µ(v) for all v, and µ is a binary distribution of v

where µ(0) = 1− E(v), and µ(1) = E(v). Note that here Eµ(v) = E(v).

In other words, if Proposition 3 holds, it is sufficient to only restrict our attention to binary

distribution µ when solving the revenue minimization problem with any distribution µ such that the

expected value is equal to E(v). Furthermore, for any value distribution µ with the same expected

value, results from the binary restriction µ give a lower bound for the revenue guarantee under µ.

Proof. See Appendix.

5.2 Binary Asymptotic Results

By the identical play simplification, the revenue minimization problem can be written as

min
σ

∫
a× dσ(v, a),

which is subject to the equilibrium constraint that for any possible deviation δ,

1

N

∫
v,a

(v − a)σ(dv, da) ≥
∫
δ>a

(v − δ)σ(dv, da)
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and that σ is an identical play BCCE consist with µ.

When N → ∞, the revenue minimization problem is subject to

0 ≥
∫
δ>a

(v − δ)σ(dv, da).

Proposition 4. If σ is a min-R BCCE such that ∀(v, a1, a2, ..., an) where

σ(v, a1, a2, ..., an) > 0, a1 = a2 = ... = an = α for some α, then α ≤ v. Moreover, there exists a

min-R BCCE such that ∀(v, a1, a2, ..., an) where σ(v, a1, a2, ..., an) > 0, a1 = a2 = ... = an = α ≤ v

for some α.

Proof. See Appendix.

For the binary distribution µ with expected value E(v), by Proposition 4, for value v = 0, it is

without loss to claim that a = 0, so the constraint can be written as

0 ≥ (1− E(v))(0− δ) +

∫
1(δ > a)(1− δ)dσ(1, a).

Let F (a) be the cdf of a given v = 1, then

F (δ) = Prob(δ > a|v = 1) =

∫
1(δ > a)dσ(1, a)

E(v)
,

so the equilibrium constraint becomes

F (δ) ≤ δ

(1− δ)

(1− E(v))
E(v)

.

Observe that F (δ) is strictly increasing in δ, and as F is a cdf, F (δ) ≤ 1, so the constraint is

effective only when

δ ≤ E(v).

To minimize revenue, we want to lower the value of a as much as possible, or the highest F as much

as possible, and that is achieved when every constraint is binding. Also note that when δ = 0, the
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constraint is satisfied, and equality is reached. Therefore, the distribution of a given v = 1 is

f(a) = F ′(a) =
(1− E(v))
E(v)(1− a)2

, where a ≤ E(v),

and

R =

∫
adσ(1, a) =

∫ E(v)

0
(1− E(v))

a

(1− a)2
da = E(v) + (1− E(v)) ln(1− E(v)).

This solves the revenue guarantee across all BCCEs given E(v) and draws a lower bound on revenue

across all distribution µ with an expected value of E(v). Note that here the full potential revenue

is E(v), so the revenue loss (the part has to be given to all buyers) is

Rloss = E(v)−R = −(1− E(v)) ln(1− E(v)),

and the share of item value distributed to the seller is

ShareSeller =
R

E(v)
= 1 +

(1− E(v)) ln(1− E(v))
E(v)

.

When E(v) = 1/2, this gives us a revenue guarantee of (1− ln 2)/2 = 0.1534. If we compare it with

the asymptotic revenue guarantee of the uniform distribution (which also has an E(v) = 1/2), we

will find it is much lower than the 1/4 guarantee level of the uniform distribution. This finding is

consistent with our lower-bound arguments.

In addition, if we plot the function of the seller’s share, we can observe that it has a value of

0 when E(v) = 0, strictly increases as E(v) rises, and eventually obtains a full share 1 when E(v)

reaches 1. In other words, with a more right-skewed shape of the value distribution, there are more

advantages on the seller’s side, and she would obtain more shares of the total surplus against all

buyers.
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5.3 Binary Finite N Results

Now let us analyze a finite N binary distribution problem. Similar to the continuous distribution

analysis, when we relax from asymptotic behavior, we lose the tractability of a simple solution and

instead have a set of characterization equations. The equilibrium constraint is

E(v)−R

N
≥ (1− E(v))(0− δ) +

∫
1(δ > a)(1− δ)dσ(1, a).

Again, let F (a) be the cdf of a given v = 1, so

F (δ) = Prob(δ > a|v = 1) =

∫
1(δ > a)dσ(1, a)

E(v)
,

and the equilibrium constraint becomes

F (δ) ≤
E(v)−R

N + δ(1− E(v))
(1− δ)E(v)

.
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To minimize revenue, we want the highest F as much as possible, so that every constraint is binding.

When δ = 0, to make sure the constraint is effective, it must be that

F (0) =
E(v)−R

N
.

And as δ increases, F increases, so the cutoff a that satisfies F (δ) = 1 for all δ ≥ a is given by the

equation
E(v)−R

N + a(1− E(v))
(1− a)E(v)

= 1. (6)

Therefore, the distribution of a given v = 1 is

f(a) = F ′(a) =
1− E(v) + E(v)−R

N

(1− a)2E(v)
, where 0 < a ≤ a,

and

R =

∫
adσ(1, a)

=

∫
af(a)E(v)da

=

∫ a

0
(1− E(v) +

E(v)−R

N
)

a

(1− a)2
da

=

[
1− E(v) +

E(v)−R

N

]
×
(

a

1− a
− ln(1− a)

)
.

(7)

Using equations (6) and (7), we could solve a and R, and R gives the binary distribution revenue

guarantee with finite N buyers.

6 Beyond FPA and Common Values

In this section, we claim that all the analysis can be extended beyond the first-price auction to any

standard auctions with no losing payments, and beyond common values to symmetric priors of the

item values, and all characterization results will still apply.

In the proofs, we use the first-price auction structure to show that the first max must be equal

to the second max. It is necessary to have the first-price auction design to derive this equality.

However, for the following argument that it is always possible to create an identical-play minimum
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revenue BCCE, the first-price auction is no longer needed. We can replace it with any standard

auction (where the highest buyers always win the item) in which all losers don’t need to pay

anything, and then all the results still follow. The idea of constructing a low revenue BCCE is to

somehow distribute the positive payoff of the item winner to all other losing buyers: it reduces all

other buyers’ incentive to offer a higher price and get the item entirely. A possible way of doing so is

to divide the positive surplus equally among all buyers (so they are homogeneous), and it achieves

the worst-case revenue guarantee level as it fully exploits the equilibrium constraint. It is necessary

to point out that under standard auctions with no losing payments, the revenue guarantee only

holds over all BCCEs with a positive payoff for any buyer in the equilibrium. A positive payoff is

needed to eliminate trivial zero-revenue scenarios. For example, in the second-price auction, it is

possible that one buyer always aims for an arbitrarily large price and all others bid 0, and it is an

uninteresting equilibrium with zero revenue.

In addition, the common value assumption can be relaxed to any symmetric prior belief of the

buyers. Now the value vi ∈ µ(v), and vi can be idiosyncratic across buyer i. The only assumption

here is the symmetric common prior µ(v). Under this generalized problem, we can still treat the

value as if the common value. That is, for all buyer i, let si = v for a common value v drawing from

µ, and let ai = H(si) as defined before, then it satisfies all the constraints and attains the same

revenue guarantee level as the common value case. The intuition is that a specific realized value vi

is unimportant, as the BCCE equilibrium deviation is ex-ante for a fixed action a′i. Everything that

matters is in the sense of the prior distribution of values, and symmetric priors make it possible to

construct identical plays and let all buyers share surplus.

7 Conclusion

In this paper, under the notion of BCCE, we characterize the revenue guarantee when the value takes

a general continuous distribution or a binary distribution based on an identical play simplification.

We start with the first-price auction and common values but then show that it works for standard

auctions and symmetric prior as well. Moreover, the asymptotic revenue guarantee of a continuous

distribution is equal to that under BCE in the literature, and the binary distribution revenue

guarantee gives the revenue guarantee level when the distribution is unknown to the seller except
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for the expected value. This paper enlarges our understanding of information-robust predictions

beyond the scope of BCE and offers some tractable conclusions when BCCE is involved. Aside from

theoretic values, it offers insights on the applied side: in many real-world Bayesian settings, when

selling an item, the item owner has little knowledge, or even no clue, of the information structure

held by the buyers. In such scenarios, it might be reasonable for the seller to target a safer but

guaranteed level of return, which is heavily researched in this paper. Based on discussions in this

paper, the supplier may now have some confidence in the level of expected revenues.

22



References

Azacis, Helmuts, and Peter Vida. 2015. “Collusive communication schemes in a first-price

auction.” Economic Theory, 58(1): 125–160.

Battigalli, Pierpaolo, and Marciano Siniscalchi. 2003. “Rationalizable bidding in first-price

auctions.” Games and Economic Behavior, 45(1): 38–72. First World Congress of the Game

Theory Society.

Bergemann, Dirk, Benjamin Brooks, and Stephen Morris. 2017. “First-Price Auctions

With General Information Structures: Implications for Bidding and Revenue.” Econometrica,

85(1): 107–143.

Blum, Avrim, MohammadTaghi Hajiaghayi, Katrina Ligett, and Aaron Roth. 2008.

“Regret minimization and the price of total anarchy.” 373–382.

Brooks, Benjamin, and Songzi Du. 2021. “Optimal Auction Design With Common Values:

An Informationally Robust Approach.” Econometrica, 89(3): 1313–1360.

Dekel, Eddie, and Asher Wolinsky. 2003. “Rationalizable outcomes of large private-value first-

price discrete auctions.” Games and Economic Behavior, 43(2): 175–188.

Du, Songzi. 2018. “Robust Mechanisms Under Common Valuation.” Econometrica, 86(5): 1569–

1588.

Fang, Hanming, and Stephen Morris. 2006. “Multidimensional private value auctions.” Jour-

nal of Economic Theory, 126(1): 1–30.

Feldman, Michal, Brendan Lucier, and Noam Nisan. 2016. “Correlated and Coarse Equi-

libria of Single-Item Auctions.” 131–144. Berlin, Heidelberg:Springer Berlin Heidelberg.
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A Proofs for Section 3 (Identical Plays)

Proposition 2. Let the first max (the highest number in a set) be max1, the second max (the second

highest number in a set) be max2, then under FPA, if σ is a min-R BCCE, for any (v, a1, a2, ..., an)

such that σ(v, a1, a2, ...an) > 0, it must be that max1{a1, ..., an} = max2{a1, ..., an}

Proof. We apply a similar analysis approach as the case of 2 buyers but generalize it to N buyers.

Define σ̃j be a permutation of σ by j indexes (i.e., ∀i > 0, buyer i+ j(mod n) in σ̃j behaves exactly

the same as buyer i in σ.) For better notation purpose, we say a+j is a permutation of +j for the

action profile a where a = (a1, a2, ..., an), then our design can be rewritten as σ̃j(v, a
+j) = σ(v, a)

for all v, j, and a. By the nature of permutations, ∀j, σ̃j must be a min-R BCCE.

Now by the convexity of BCCE and the linearity of revenue,

σ̂ :=
1

n

n∑
j=1

σ̃j

must also be a min-R BCCE. We will work on σ̂ from now on, as it gives advantages of identical

plays and the same payoff levels for all the buyers. All the proof steps so far are analogous to the

case of 2 buyers, and our next step is to modify σ̂, construct a new distribution γ, and, if the claim

doesn’t hold, draw contradictions from there.

For any (v, a1, a2, ..., an) such that σ(v, a1, a2, ...an) > 0, let us assume that σ(v, a1, a2, ...an) =

p > 0, so ∀j, σ̃j(v, a+j) = σ(v, a) = p. Define

σ̂(v) =
1

n

∑
j

σ̃j(v, a
+j)× (v, a+j) =

p

n
×
∑
j

(v, a+j)

and let amax1 be the first max of {a1, a2, ..., an}, and amax2 be the second max of {a1, a2, ..., an}.

Without loss of generality, we can let a1 be the first max, and a2 be the second max. Now consider

a modified distribution

γ = σ̂ − σ̂(v) +
(n− 1)p

n
(v, amax1 , amax1 , ..., amax1) +

p

n
× (v, amax2 , amax2 , ..., amax2)

= σ̂ − σ̂(v) +
(n− 1)p

n
(v, a1, a1, ..., a1) +

p

n
× (v, a2, a2, ..., a2)
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In other words, we modify the dictionary σ̂ and construct a new dictionary γ in the following

way: first delete the σ̂(v) parts of σ̂ (subtract probability value p/n in the keys of (v, a+j) for

every j, then add probability value (n − 1)p/n to key (v, a1, a1, ..., a1) and probability value p/n

(v, a2, a2, ..., a2). It is easy to check conditions that
∑

a σ(v, a) = µ(v) for all possible v and that∑
v,a σ(v, a) = 1 are satisfied, so this modification is valid.

Now we want to compare γ to σ̂. First we show that R(σ̂) ≥ R(γ). By the nature of FPA

pricing function,

R(σ̂)−R(γ) =
p

n
namax1 −

p

n
(n− 1)a1 −

p

n
a2 =

p

n
(a1 − a2) ≥ 0.

Consequently, since buyers’ actions are both identical in σ̂ and γ, then ∀i,

Eσ̂(ui) =
EV −R(σ̂)

n
≤ EV −R(γ̂)

n
= Eγ(ui)

Secondly, we show that γ is also a BCCE. Let σ̂rest = σ̂ − σ̂(v), the common part shared in σ̂ and

γ. Then from the perspective of BCCE equilibrium constraint, since σ̂ is a valid BCCE, (we use a

different notation b as a is fixed in the previous argument),

∀i, ∀b′i,
∑

v,bi,b−i

ui(v, bi, b−i)σ̂(v, bi, b−i) ≥
∑

v,bi,b−i

ui(v, b
′
i, b−i)σ̂(v, bi, b−i).

Rewrite the equation,

∀i, ∀b′i, Eσ̂(ui) ≥
∑

v,bi,b−i

ui(v, b
′
i, b−i)σ̂(v, bi, b−i)

=
∑

v,bi,b−i

ui(v, b
′
i, b−i)σ̂rest(v, bi, b−i) +

p

n
×
∑
j

ui(v, b
′
i, a

+j
−i )

But if we consider the marginal opponent’s action distribution, by the allocation rule of FPA, only

the highest bid among all opponents (−i) would affect buyer i’s payoff and correspondingly, optimal

strategies. Therefore, with a litter abuse of notation which restricts attention only to the highest
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bid of all opponents,

∑
j

ui(v, b
′
i, a

+j
−i ) =

∑
j

ui(v, b
′
i,max(a+j

−i )) = (n− 1)ui(v, b
′
i, a1) + ui(v, b

′
i, a2)

= (n− 1)ui(v, b
′
i, a1, a1, ..., a1) + ui(v, b

′
i, a2, a2, ..., a2).

Then ∀i, ∀b′i,

Eγ(ui) ≥ Eσ̂(ui)

≥
∑

v,bi,b−i

ui(v, b
′
i, b−i)σ̂rest(v, bi, b−i) +

p

n
[(n− 1)ui(v, b

′
i, a1, a1, ..., a1) + ui(v, b

′
i, a2, a2, ..., a2)]

=
∑

v,bi,b−i

ui(v, b
′
i, b−i)γ(v, bi, b−i).

Hence, γ is also a valid BCCE. However, because σ̂ is a minimum revenue BCCE, it must be that

R(σ̂) ≤ R(γ). This is only allowed to occur when p
n(a1 − a2) = 0, or when a1 = a2. Hence, it must

be that max1 {a1, a2, ..., an} = max2 {a1, a2, ..., an}, as desired.

Lemma 1. (Identical plays) There exists a min-R BCCE σ such that for all σ(v, a1, a2, ..., an) > 0,

∃α s.t. a1 = a2 = ... = an = α. We call such σ an identical play BCCE.

Proof. To prove this claim, we start with an arbitrary min-R BCCE σ and construct an identical

play min-R BCCE γ based on it. First follow the procedure in proposition 2, as long as there is any

tuple (v, a1, a2, ..., an) such that σ(v, a1, a2, ..., an) = p > 0 and a1, a2, ..., an are not all the same,

fix (v, a1, a2, ..., an), we can construct a min-R BCCE γ given σ. Notice that the first max must

have the same value as the second max, so γ can be simplified as

γ = σ̂ − σ̂(v) +
np

n
(v, amax1 , amax1 , ..., amax1)

= σ̂ − σ̂(v) + p× (v, a1, a1, ..., a1)

By the subsequent argument in proposition 2, γ is a min-R BCCE. Hence, in this iteration of mod-

ification, we manage to create a min-R BCCE which achieves, for the fixed tuple (v, a1, a2, ..., an),

a1 = a2 = ... = an = α for α = a1. Using the newly created BCCE as the next start point, we could
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repeat iterations as long as there is any tuple (v, a1, a2, ..., an) such that σ(v, a1, a2, ..., an) = p > 0

and a1, a2, ..., an are not all the same. Eventually, we could find an identical play min-R BCCE,

such that for all σ(v, a1, a2, ..., an) > 0, there exists some α such that a1 = a2 = ... = an = α.

B Proofs for Section 4 (Characterization of a Continuous Distri-

bution)

Lemma 2. (Monotonicity) Without loss of generality, we can treat the identical play min-R BCCE

σ as monotonic, that is ∀(v1, a1), (v2, a2) such that σ(v1, a1) > 0, σ(v2, a2) > 0, if v1 > v2, then

a1 > a2.

Proof. We start with an identical play min-R BCCE σ and pick a small share of the distribution

with the probability ϵ in the regions (v1, a1) and (v2, a2) such that σ(v1, a1) > 0, σ(v2, a2) > 0,

v1 > v2, and a1 < a2. Then we switch the actions in those 2 regions with ϵ probability and construct

a new distribution σ̃, that is,

σ̃ = σ − ϵ× (v1, a1)− ϵ× (v2, a2) + ϵ× (v1, a2) + ϵ× (v2, a1).

It is easy to check that after the changes, σ̃ is still an identical play min-R BCCE. The economic

reason behind it is that previously, buyers paid less for a higher-valued item and paid more for a

lower-valued item, so they would be more inclined to deviate, and now it is the other way around,

so all the equilibrium constraints have to be satisfied. Then we could repeat the ϵ changes on all

inconsistent pairs of (v1, a1) and (v2, a2). At the end of the day, a monotonic identical play min-R

BCCE σ could be obtained.

C Proofs for Section 5 (Unknown Distributions)

Proposition 3. (Lower bound for binary restriction) Under FPA,

min
µ(v) s.t.Eµ(v)=E(v)

min
γ

R(γ)|µ ⇐⇒ min
γ

R(γ)|µ
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where γ is a BCCE that satisfies
∑

a γ(v, a) = µ(v) for all v, and µ is a binary distribution of v

where µ(0) = 1− E(v), and µ(1) = E(v). Note that here Eµ(v) = E(v).

Proof. Let σ be a minimum revenue BCCE across all µ with Eµ(v) = E(v), i.e.,

σ ∈ argmin
γ

(
min

µ s.t.Eµ(v)=E(v)
R(γ)|µ

)
.

Define µmin to be such a value distribution when the minimum revenue is attained. Then by

definition of minimum revenue BCCE across all distributions, for any σ̃ that is a BCCE following

a value distribution µ̃,

R(σ)|µmin ≤ R(σ̃)|µ̃

Now consider a support in σ where σ(v, a1, a2, ..., an) = p > 0 (here v follows the µmin distribu-

tion). By Proposition 4, we can choose σ to be an identical play BCCE such that a1 = a2 = ... =

an = c ≤ v. Then let

σ̃ = σ − p× σ(v, c, c, ..., c) + p(1− v)× (0, c, c, ..., c) + pv × (1, c, c, ..., c)

In another sense, we modify the distribution σ and construct a new distribution σ̃ (under a different

µ̃) but still guarantee that they have the same expected value E(v) and share the same action

profiles. Therefore, they have the same deviation payoff for any deviation di for a buyer i. Also

because of same action profiles, R(σ̃)|µ̃ = R(σ)|µmin, and we can further conclude that σ̃ is also a

min-R BCCE. Note that after the modification, we successfully replace the part of the distribution

with value v to parts with the value of 0 and 1, and still keep the minimum revenue potential. We

could repeat the procedure until there is no positive probability in values other than 0 and 1 (i.e.,

until µ̃(v) = 0 for all v ̸= 0, 1.) But since Eµ̃(v) = E(v), so it must be that µ̃ = µ. Hence, we can

restrict our attention only to the binary µ distribution.

Proposition 4. If σ is a min-R BCCE such that ∀(v, a1, a2, ..., an) where

σ(v, a1, a2, ..., an) > 0, a1 = a2 = ... = an = α for some α, then α ≤ v. Moreover, there exists a

min-R BCCE such that ∀(v, a1, a2, ..., an) where σ(v, a1, a2, ..., an) > 0, a1 = a2 = ... = an = α ≤ v

for some α.
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Proof. Start with σ, fix (v, a1, a2, ..., an) and suppose that σ(v, a1, a2, ..., an) = p > 0, then a1 =

a2 = ... = an = α for some number α, and it is sufficient to prove α ≤ v. If α > v, let σ̃ =

σ− p× (v, α, α, ..., α) + p× (v, v, v, .., v), so σ̃ is the same distribution as σ except for p probability

share of (v, α, α, ..., α) substituted by (v, v, v, ..., v). By design, σ̃ is a valid distribution. Now

consider a deviation di for some buyer i > 0. Since all buyers have identical strategies and thus

identical payoffs, it is sufficient to only look at one buyer i.

If di ≤ v or di ≥ α, deviation di would get exactly the same payoff for buyer i in either σ or σ̃.

Since σ is a BCCE, no di is favorable in σ. Also note that Eσ̃(ui) > Eσ(ui) because in σ̃ buyers

collude and pay less when the value is v. Combining these two findings we can conclude that di is

also not preferred in σ̃.

If v < di < α, we can consider the difference in payoffs for buyer i in σ̃ and σ. By deviating to

di, buyer i will win the bid and get (v − di)p < 0 in σ̃. On the other hand, playing di will lose the

bid and get a zero payoff in σ. Again, recall that Eσ̃(ui) > Eσ(ui). Hence, if di is not preferred in

σ, it will be even less profitable in σ̃.

Now we can conclude that σ̃ is also a BCCE. However, notice that
∑

i Eσ̃(ui) >
∑

i Eσ(ui), so

R(σ̃) < R(σ), which contradicts with the min-R assumption of σ. Hence, it can’t be that α > v,

which completes the proof of the first part of the claim. The second part is directly implied by the

first part and Lemma 1.
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